a2 United States Patent

Budhai et al.

US009229846B1

US 9,229,846 B1
Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@

(22)

(60)

(1)

(52)

(58)

TESTING APPLICATION CODE CHANGES
USING A STATE ASSERTION FRAMEWORK

Applicant: SAP SE, Walldorf (DE)
Inventors: Roy Budhai, Richmond (CA); Brian

Chen, Burnaby (CA); Teresa Su,
Vancouver (CA); Sheldon Sequeira,

North Vancouver (CA)

Assignee: Business Objects Software, Ltd.,
Dublin (IE)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/500,859

Filed: Sep. 29, 2014

Related U.S. Application Data

Provisional application No. 62/044,085, filed on Aug.
29, 2014.

Int. Cl1.

GO6F 9/44 (2006.01)

GO6F 11736 (2006.01)

U.S. CL

CPC ... GO6F 11/3672 (2013.01); GOG6F 11/368

(2013.01); GO6F 11/3696 (2013.01)
Field of Classification Search

CPC GOGF 11/3672; GOG6F 11/3696; GOGF
11/368; GOG6F 11/3466; GOGF 11/3636
USPC i 717/130

See application file for complete search history.

800 ’ﬁ

(56) References Cited

U.S. PATENT DOCUMENTS

6,745,383 B1* 6/2004 Agarwal ... GO6F 11/3495
714/39
2004/0054992 Al* 3/2004 Naircccovvennnnnne GOG6F 8/443
717/138
2005/0240737 Al* 10/2005 Holtccccooevvinnine GOG6F 9/445
711/148

OTHER PUBLICATIONS

“What is Selenium?” 2 pp., downloaded from http://www.
seleniumhgq.org/ on Aug. 21, 2014.

* cited by examiner

Primary Examiner — Anna Deng
(74) Attorney, Agent, or Firm — Klarquist Sparkman, LL.P

(57) ABSTRACT

Systems and methods are disclosed for analyzing application
code changes. The method may include adding instrumenta-
tion code to a selected one or more of a plurality of software
objects associated with an application, when a corresponding
object class for the selected software objects matches at least
one preferred object class. In response to at least one appli-
cation-related event, detecting using the instrumentation
code, one or more state changes of the selected software
objects or one or more communications between at least two
of the selected software objects. At least one baseline asser-
tion may be generated using the instrumentation code based
on the one or more state changes or communications. A
notification may be generated upon detecting at least one
subsequent assertion that does not match the at least one
baseline assertion. A list with the at least one preferred object
class may be accessed in a configuration file.

15 Claims, 11 Drawing Sheets

Add instrumentation code to a selected one or more of a
plurality of software objects associated with an application,
when a corresponding object class for the selected software
objects matches at least one preferred object class.

Y
TR Fesponse 10 al least one applicaton-related event, detect
using the instrumentation code, one or more state changes of
the selected software objects, or one or more communications

between at least two of the selected software objects.

802

804

Generate using the instrtumentation code, at least one
baseline assertion based on the one or more state changes or
communications.

806

Y

Generating a notification upon detecting at least one
subsequent assertion that does not match the at least one

baseline assertion.

\ 808

U.S. Patent

FIG.

Jan. 5§, 2016

1

Sheet 1 of 11

US 9,229,846 B1

APPLICATION SERVER 102

APPLICATION 106

OBJECT CLASS 1

108

FILE A "

FILEB

OBJECT CLASS N
110

FILE Z

FILEY

COMPUTING DEVICE 104

132

h 4

SAF

DEPENDENCIES
124
106
114 / 136
- SAF TOOLBAR
| SELECTEDCLASS 1 || | STATE ASSERTION g / 122
FRAMEWORK {SAF} 120 ™| | object A (Class 1) —
| SELECTED CLASS 2 |. INSTR. CODE
A APP 106
CONFIG. FILE 116 APP- : Lz BROWSER 118
112 RELATED objsct B {Class 1)
EVENT(S) ™\
128 INSTR. CODE e
SAF \ 138
SELECTION maseLing : ia2
== ASSERTIONS object Z (Class N}
130
\ 4
SUBSEQUENT
(REPLAY)
ASSERTIONS

U.S. Patent Jan. 5,2016 Sheet 2 of 11 US 9,229,846 B1
FIG. 2

OBJECTS

APPLICATION 106 OBJECT CLASS: C..D212
IC / MODEL 204 \([&3\
7 145
e o |
/ a2
=] O\ . G
'/\E<NSTRUMENTATION
CODE

USER 208

U.S. Patent Jan. 5,2016 Sheet 3 of 11 US 9,229,846 B1

300

FIG. 3

U.S. Patent Jan. 5,2016 Sheet 4 of 11 US 9,229,846 B1

400

404

- |
{Save Meoording

414 /

FIG. 4

U.S. Patent Jan. 5,2016 Sheet 5 of 11 US 9,229,846 B1

500

502

504

506

i, 508

3 T BRvalig

s oo 1 Top
o Py

516

FIG. 5

U.S. Patent Jan. 5,2016 Sheet 6 of 11 US 9,229,846 B1

600

Piaay ¥

602

CRAGIE

FIG. 6

U.S. Patent

Jan. 5§, 2016 Sheet 7 of 11

Load
Recording of
Actions

702

Simulate
Next Action
in List

704

;

A 4

Monitor
JavaScript
Ohbjects for State 706
Changes

NO *

Record
Communication

Between Application | | 708
Components {(MVC)

Caal-down Period Elapsed?

Application Settled? 710

Compare Detected
Assertions with
Assertions from [~ 712
Recording Save

714

NO

Assertions are Equal?
Appiication Behaves as
Expected?

YES

716

718 72
Update / Aci
Assertion Base™_YES Overwrite Old a On[‘e _anlOff‘Sr YES
on New Assertion emaining fo
Behavior?,

Simuiation?

Developer Should
Refactor Code to
Adhere to Old
Assertions

US 9,229,846 B1

700

U.S. Patent Jan. 5,2016 Sheet 8 of 11 US 9,229,846 B1

800 -—"N

Add instrumentation code to a selected one or more of a
plurality of software objects associated with an application,
when a corresponding object class for the selected software \
802

objects matches at least one preferred object class.

In response 10 at ieast one application-reiated event, detect
using the instrumentation code, one or more state changes of
the selected software objects, or one or more communications \

between at least two of the selected software objects.

804
Generate using the instrumentation code, at least one
baseline assertion based on the one or more state changes or
communications. \
806
Generating a notification upon detecting at least one
subsequent assertion that does not match the at least one
baseline assertion.
\ 808

FIG. 8

U.S. Patent Jan. 5,2016 Sheet 9 of 11 US 9,229,846 B1

900 -\‘

Receive a plurality of file components for an application, each
filte component associated with at least one of a plurality of
object classes. \ 902

Add instrumentation code to at least one of the plurality of file
components, when an object class for the at least one file
component matches at least one preferred object class. \ 904

Monitor using the instrumentation code, one ar more software
objects assaciated with the at least one file component. \ 906

Upon detecting a state change in the one or more software
objects, store at least one received input instruction, the input
instruction causing the state change, and generate using the
instrumentation code, an assertion associated with the state \ 308

change.

Replay the stored at least one input instruction to verify the
assertion.

\910

FIG. 9

U.S. Patent Jan. 5,2016 Sheet 10 of 11 US 9,229,846 B1

1000 —'—\‘

Retrieve a plurality of instructions, where the instructions are
associated with at least one an input to an application, the at

least one input causing a first state change in at least one \
1002

software object of the application.

Retrieve a first assertion result, where the first assertion result
is based on an assertion generated by an instrumentation
code within the application and associated with the first state
change (i.e., first assertion result is the benchmark or \
expected ouicome).

1004
While executing the retrieved plurality of instructions,
monitoring, using the instrumentation code, the at least one
software object. \
1006

Upon detecting a second state change in the at least one
software object, determine a second assertion result using the
assertion, the second state change taking place subsequent

to at least one application code change for the application. \
1008

Compare the first and second assertion results.

\1010

Determining whether to refactor code of the application
associated with the at least one code change based on the

comparison. \
1012

FIG. 10

U.S. Patent Jan. 5,2016 Sheet 11 of 11 US 9,229,846 B1

Fr—— - ""-""-""""=-"—"""—-"7——-———_—__—_— A

| COMPUTING ENVIRONMENT 1100[COMMUNICATION

| T e~~~ ——— | | CONNECTION(S) 1170

| | Y\ (graphics or) |
| contral co- | INPUT DEVICE(S) 1150 |

l | processing processing |)

I l | unit 1010 J{ “unit 1115 J | I

| p ~ | | OUTPUT DEVICE(S) ||

| ("MEMORY) { MEMORY | 1160 |
| 1120 1125 I

| R A ' 1-------; STORAGE

I S S N S ngreent 1140 :

SOFTWARE 1180 IMPLEMENTING TECHNOLOGIES

1200

FIG. 12

SAF 12

CLOUD COMPUTING SERVICES

COMPUTING | | COMPUTING | | COMPUTING
DEVICE DEVICE DEVICE
1220 1222 1224

US 9,229,846 B1

1
TESTING APPLICATION CODE CHANGES
USING A STATE ASSERTION FRAMEWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS/INCORPORATION BY
REFERENCE

This application makes reference to and claims priority to
U.S. Provisional Application Ser. No. 62/044,085, filed on
Aug. 29, 2014, entitled “TESTING APPLICATION CODE
CHANGES USING A STATE ASSERTION FRAME-
WORK,” which is incorporated herein by reference in its
entirety.

BACKGROUND

As enterprises accumulate ever-greater amounts of data on
their transactions, processes, products, and operations, online
analytical processing has become an important part of doing
business. The number of tools and techniques addressing
analytical processing has grown, enabling data analysts to
quickly analyze and navigate through vast and complex col-
lections of data using processing software and platforms. In a
computing environment with many computing devices, such
as a network environment (e.g., a cloud computing environ-
ment or other network environments) with many server com-
puters, the use of computing resources can provide a number
of advantages including cost advantages and/or the ability to
adapt rapidly to changing computing resource needs.

With the increased use of computing resources, reliability
of software deployment is essential. For example, deploying
new software to a server can result in a misconfiguration or
unintended changes being introduced with the new software
resulting in the server being in some way impaired or
degraded. Therefore, testing application code during soft-
ware development is an essential part of reliable software
deployment in a network environment.

SUMMARY

The Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. The Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

In an example aspect of the disclosure, a computer-imple-
mented method of developing a user interface is disclosed and
may include adding instrumentation code to a selected one or
more of a plurality of software objects associated with an
application, when a corresponding object class for the
selected software objects matches at least one preferred
object class. In response to at least one application-related
event, detecting using the instrumentation code, one or more
state changes of the selected software objects or one or more
communications between at least two of the selected software
objects. At least one baseline assertion may be generated
using the instrumentation code based on the one or more state
changes or communications. A notification may be generated
upon detecting at least one subsequent assertion that does not
match the at least one baseline assertion. A list with the at least
one preferred object class may be accessed in a configuration
file.

In another aspect of the disclosure, a computer-readable
storage is disclosed and may include instructions for execut-
ing a method for analyzing application code changes. The
method may include receiving a plurality of file components

10

15

20

25

30

35

40

45

55

60

65

2

for an application, each file component associated with at
least one of a plurality of object classes. Instrumentation code
may be added to at least one of the plurality of file compo-
nents, when an object class for the at least one file component
matches at least one preferred object class. One or more
software objects associated with the at least one file compo-
nent may be monitored using the instrumentation code. Upon
detecting a state change in the one or more software objects,
atleast one received input instruction causing the state change
may be stored. An assertion associated with the state change
may be generated using the instrumentation code. The stored
at least one input instruction may be replayed to verify the
assertion.

In yet another aspect of the disclosure, a computing device
is disclosed which includes a processor and a memory. The
computing device may be adapted to perform a method for
analyzing application code changes. The method may include
retrieving a plurality of instructions, where the instructions
are associated with at least one an input to an application. The
at least one input may cause a first state change in at least one
software object of the application. A first assertion result may
be retrieved, where the first assertion result may be based on
an assertion generated by an instrumentation code within the
application and associated with the first state change. While
executing the retrieved plurality of instructions, the at least
one software object may be monitored using the instrumen-
tation code. Upon detecting a second state change in the at
least one software object, a second assertion result may be
determined using the assertion. The first and second assertion
results may be compared. A determination may be performed
as to whether or not to refactor code of the application based
on the comparison.

As described herein, a variety of other features and advan-
tages can be incorporated into the technologies as desired.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an interaction between an
application server and a computing device implementing a
state assertion framework (SAF) for application code testing,
in accordance with an example embodiment of the disclosure.

FIG. 2 is a block diagram of an application implementing
instrumentation code, in accordance with an example
embodiment of the disclosure.

FIG. 3 is a diagram of an example user interface generated
by the state assertion framework of FIG. 1, in accordance with
an example embodiment of the disclosure.

FIG. 4 is a flowchart of an example use case of the SAF of
FIG. 1, in accordance with an example embodiment of the
disclosure.

FIG. 5 is a flowchart of an example SAF initialization
sequence, in accordance with an example embodiment of the
disclosure.

FIG. 6 is a flowchart of an example recording algorithm
used by the SAF of FIG. 1, in accordance with an example
embodiment of the disclosure.

FIG. 7 is a flowchart of an example replay algorithm used
by the SAF of FIG. 1, in accordance with an example embodi-
ment of the disclosure.

FIGS. 8-10 are flowcharts of example methods for analyz-
ing application code changes, in accordance with an example
embodiment of the disclosure.

FIG. 11 is a diagram of an example computing system, in
which described embodiments can be implemented.

US 9,229,846 B1

3

FIG. 12 is an example cloud computing environment that
can be used in conjunction with the technologies described
herein.

DETAILED DESCRIPTION

The technologies described herein can be used in an appli-
cation code development and testing environment. More spe-
cifically, a State Assertion Framework (SAF) may implement
one or more of the technologies described herein during, for
example, regression testing of application code, as a “capture
and replay” tool (i.e., test case generation and subsequent
replay), and as an assertion framework (i.e., generate one or
more assertions during the test case generation, and verify the
assertions in the replay stage). During the “capture and
replay”, developers may record their interactions with a web
application with the intention of simulating these actions at a
later time. For a deterministic application, this would allow
developers to ensure that their application behaves as
expected from the end-user’s perspective without the need for
frequent manual input.

In object-oriented programming languages, such as Java-
Script, a running application may be represented as objects.
As an assertion framework, SAF may be used to monitor the
behavior of a subset of objects and to compare their charac-
teristics to those of a known benchmark (e.g., an assertion). In
addition to automatically generating an initial benchmark
assertion (which may be considered the correct behavior for
an object), SAF may also allow developers to update the
known benchmark assertion for a test case, if the new behav-
ior of their application is deviating from it. In addition to
tracking characteristics of a programming object, SAF may
also be used to track the creation of a specific type of object,
such as events. Events are a subset of objects, which are
employed in a number of design patterns (e.g. Model-View-
Controller design pattern) in order to drive the behavior of an
application. Various components of a single application often
use events in order to communicate with each other. In this
regard, SAF may be used to insert instrumentation code
within the monitored application code in order to track events
by tracking communications between application compo-
nents (e.g., between the Model, View and/or Controller com-
ponent of the application).

In this document, various methods, processes and proce-
dures are detailed. Although particular steps may be
described in a certain sequence, such sequence is mainly for
convenience and clarity. A particular step may be repeated
more than once, may occur before or after other steps (even if
those steps are otherwise described in another sequence), and
may occur in parallel with other steps. A second step is
required to follow a first step only when the first step must be
completed before the second step is begun. Such a situation
will be specifically pointed out when not clear from the con-
text. A particular step may be omitted; a particular step is
required only when its omission would materially impact
another step.

In this document, the terms “and”, “or” and “and/or” are
used. Such terms are to be read as having the same meaning;
that is, inclusively. For example, “A and B” may mean at least
the following: “both A and B”, “only A”, “only B”, “at least
both A and B”. As another example, “A or B” may mean at
least the following: “only A”, “only B”, “both A and B”, “at
least both A and B”. When an exclusive-or is intended, such
will be specifically noted (e.g., “either A or B”, “at most one
of A and B”).

In this document, various computer-implemented meth-
ods, processes and procedures are described. It is to be under-

10

15

20

25

30

35

40

45

50

55

60

65

4

stood that the various actions (receiving, storing, sending,
communicating, displaying, etc.) are performed by a hard-
ware device, even if the action may be authorized, initiated or
triggered by a user, or even if the hardware device is con-
trolled by a computer program, software, firmware, etc. Fur-
ther, it is to be understood that the hardware device is oper-
ating on data, even if the data may represent concepts or
real-world objects, thus the explicit labeling as “data” as such
is omitted. For example, when the hardware device is
described as “storing a record”, it is to be understood that the
hardware device is storing data that represents the record.

As used herein, the term “application program” (some-
times shortened to application) can refer to any program
designed to perform a specific function directly for the user
or, in some cases, for another application program. Examples
of application programs include word processors; database
programs; Web browsers; network administration tools;
development tools; drawing, paint, and image editing pro-
grams; and communication programs. Application programs
use the services of the computer’s operating system and other
supporting programs.

As used herein, the term “model-view-controller” refers to
a software architectural design pattern, which divides a soft-
ware application into three interconnected components, sepa-
rating internal representations of information from ways
information is presented to or accepted by a user. A more
detailed view of the “model-view-controller” design pattern
is illustrated in reference to FIG. 2.

As used herein, the term “assertion” is a true-false state-
ment placed in a program (e.g., application code) to indicate
that a predicate designated by the assertion is true at the place
in the program where the assertion is inserted. In instances
when an assertion evaluates to false at run-time, an assertion
failure results and the code execution is aborted.

FIG. 1 is a block diagram of an interaction between an
application server and a computing device implementing a
state assertion framework (SAF) for application code testing,
in accordance with an example embodiment of the disclosure.
Referring to FIG. 1, the communication system 100 may
include an application server 102 communicatively coupled
with a computing device 104. The application server 102 may
comprise suitable logic, circuitry, interfaces, and/or code and
may be operable to provide access (e.g., for downloading) to
one or more applications, such as application 106. The appli-
cation 106 may be, for example, a browser-based application
(or any other type of application), and may include a plurality
of file components, such as files A, . . ., Z. The file compo-
nents A, . . ., Z may be associated with one or more object
classes 108, . . ., 110, as seen in FIG. 1.

The computing device 104 can be a smart phone or other
wireless phone, a laptop or netbook computer, a tablet or
notepad computer, a wearable computer, a mobile station, an
entertainment appliance, an audio and/or video playback
device, a game console, an automotive computer, and so
forth. The computing device 104 can also be referred to as
being a mobile device because the device 104 may be
designed or intended to be moved to multiple different loca-
tions (e.g., taken by a user with him or her as the user goes to
different locations).

The computing device 104 may comprise suitable logic,
circuitry, interfaces, and/or code and may be operable to
implement a state assertion framework (SAF) performing the
functionalities described herein. The SAF may be imple-
mented as a separate application or as part of an operating
system for the device 104.

In operation, the SAF may be used to perform static and
dynamic analyses. To track the state of a given object within

US 9,229,846 B1

5

an application and to monitor the communication between
various components (via events), the SAF may perform the
static analysis of an application’s implementing code (e.g.,
software objects 136, . . ., 140). During the static analysis, the
instrumentation code 142 may be added to one or more of the
object classes (e.g., 136, . . ., 138) in order to extract infor-
mation during the dynamic analysis performed during run-
time. Even though the SAF 120 is illustrated in reference with
a browser-based application 106 (running within browser
118), the specification may not be limited in this way and the
SAF 120 may also function in non-browser based application
testing environment.

FIG. 41is a flowchart 400 of an example use case of the SAF
of FIG. 1, in accordance with an example embodiment of the
disclosure. At 402, the original application 106 may be loaded
in browser 118. The application 106 may be an application
that uses program code currently being developed or tested.

At404, the SAF 120 may be loaded (started) when the SAF
selection signal 126 is received at the device 104. The SAF
selection signal 126 may be generated by, e.g., activating a
software button by a user or by another user input.

At 406, the SAF 120 may be initialized and the static
analysis may be performed. More specifically, the SAF 120
may access a configuration file (e.g., 112) with one or more
selected object classes (e.g., 114-116). As portions of the
application 106 are being loaded (files A, . . ., Z), the SAF 120
may check the class of software objects associated with the

application 106 (e.g., objects 136, . . . , 140) against the
selected classes 114-116. If there is a match (i.e., the object
class of a received file segment 136, . . . , 138 matches the

selected classes 114-116 in the configuration file 112), then
the instrumentation code 142 is appended (or added) to the
software object (instrumentation code 142 is added to objects
136, ...,138 as seen in F1G. 1). By instrumenting application
code of application 106 (i.e., inserting instrumentation code
142), the SAF 120 may track the application flow of execu-
tion. The SAF 120 may capture and update the state of mul-
tiple objects (e.g., 136, . . . , 138) during the application’s
execution. Such states may be used as benchmarks (e.g.,
assertions generated during the recording phase of the
dynamic analysis) during the replay phase to assert that an
application is behaving correctly.

The added instrumentation code 142 may also be used to
capture the occurrence of intra-application events defined by
the original application’s developers (used as communication
between modules as seen in the Model-View-Controller
design pattern). FIG. 2 is a block diagram of an application
implementing instrumentation code, in accordance with an
example embodiment of the disclosure. Parts of the applica-
tion 106 may be associated with one of an object class view
202, an object class model 204 or object class controller 206.
The view 202, model 204 and controller 206 may have cor-
responding software objects 210, 212, and 214, respectively,
associated with them. The view 202 may present an output to
the user 208. Additionally, actions of user 208 on the view 202
may trigger behavior (e.g., performance of an object-related
action) by the controller 206.

The controller 206 can be operable to send commands to
the model 204 to update the model’s state (e.g., editing a
document). The controller 206 can also send commands to its
associated view 202 to change the view’s presentation of the
model (e.g., by scrolling through a document), or may act
upon actions triggered by the user 208 on the view 202. The
model 204 may notify its associated view 202 and controller
206 when there has been a change in its state. Such notifica-
tion allows the view 202 to generate an updated output (e.g.,
for user 208), and the controller 206 to change the available

10

20

25

30

35

40

45

50

55

60

65

6

set of commands. The view 202 may request information
from the model 204 that it uses to generate an output repre-
sentation to the user 208.

Often in complex web applications, lower-level events,
such as those from mouse clicks initiated by user 208, may be
abstracted into application-specific events that are used as a
form of communication between different components of
application 106 (i.e., a layer between user actions in the
browser environment and the application’s code). Since such
events are implemented in a programming language as well
(e.g., JavaScript), the SAF 120 may capture them as well
using the instrumentation code 142.

During the static analysis phase, the SAF 120 may add
instrumentation code 142 between the various user-model-
view-controller connections, as seen in FIG. 2. In this regard,
the SAF 120 may use the instrumentation code 142 to track
events and, consequently, track communications between the
various components (e.g., objects 210-214) within the appli-
cation 106. By tracking the events/communications, the SAF
120 may generate one or more alerts or recommendations
using, for example, an assertion generated during the record-
ing phase, as explained below.

The SAF initialization at 406 may also include installation
ofauser interface (e.g., atoolbar) 122 within the browser 118.
FIG. 3 is a diagram 300 of an example user interface gener-
ated by the state assertion framework of FIG. 1, in accordance
with an example embodiment of the disclosure. As seen in
FIG. 3, the SAF 120 may append the tool bar 122 to the top of
the browser window where the application 106 is running.
The toolbar 122 may include “Start Recording™ and “Stop
Recording” buttons to start and stop a recording phase during
the dynamic analysis. The toolbar 122 may also include a
“Replay” button to initiate a replay of stored command
sequence, as well as other buttons (e.g., Save, Choose File,
Load, and so forth) associated with manipulating a file with a
recorded command sequence (e.g., recorded during the
recording phase, as explained in reference to FIG. 6 below. In
this regard, once added, the toolbar 122 provides the ability to
record or replay user interactions with the application 106
through the web browser 118.

At 408, the toolbar 122 may be used to select the record
phase 410 (explained in FIG. 6) or the replay phase 412
(explained in FIG. 8). User actions and the related software
object state changes may be captured during the recording
phase 410. Conversely, the same actions may be simulated
during the replay phase 412, at which time the original state
changes are compared with the current state changes, thereby
allowing for testing of application code changes for applica-
tion 106.

FIG. 5 is a flowchart of an example SAF initialization
sequence, in accordance with an example embodiment of the
disclosure. Referring to FIGS. 1-5, the example initialization
sequence 500 may start at 502, when framework dependen-
cies may be loaded. More specifically, SAF dependencies 124
may be accessed by the SAF 120. The SAF dependencies 124
may include one or more configuration, data or other type of
files, which may be used by the instrumentation code 142. At
504, the application 106 may be re-loaded into the browser
118. More specifically, the application components (e.g., files
A, ..., Z)may be re-loaded from the application server 102,
which allows the SAF 120 to inspect software objects asso-
ciated with the received files A, . . ., Z in order to determine
whether to inject/add instrumentation code 142. In this
regard, while being reloaded, all file components A, . .., Z
(which may be, e.g., JavaScript files) for the application 106
are intercepted (at 506) and analyzed by the SAF 120 as they
are received from the application server 102.

US 9,229,846 B1

7

At 508, the SAF 120 may determine if the intercepted file
is pertinent. For example, the object class for one or more
software objects (e.g., 136, . . ., 138) may be compared to the
selected class 114-116 in the configuration file 112. If there is
a match, then the component can be deemed relevant and, at
510, instrumentation code 142 may be added to the object
(136, . . ., 138). In this regard, before being passed to the
application 106 (at 512), additional code is added (at 510) to
the intercepted application code in order to track object states
and messages/events between application components. Infor-
mation from this tracking may be used to generate assertions
(e.g., as shown in FIG. 6). Additionally, event listeners (e.g.,
the instrumentation code 142 seen in FIG. 2) may be added to
the browser as an extra layer between the user and the target
application in order to record user actions. If all application
files are received (check at 514), the toolbar 122 may be
appended to the top of the application 106 within the browser
118.

FIG. 6 is a flowchart of an example recording algorithm
used by the SAF of FIG. 1, in accordance with an example
embodiment of the disclosure. Referring to FIGS. 1-4 and 6,
the recording phase 600 may start at 602, when actions and
inputs from the user to the browser 118 are recorded. Such
inputs may include, for example, inputs from the computer’s
mouse and keyboard. After each detected action, the resulting
effect on the software objects (e.g., 136, . . ., 138) of the
application is captured. More specifically, the instrumenta-
tion code 142 added during the SAF initialization may be
used to monitor (at 608) state changes of the software objects
(136, . . ., 138) and determine how application’s component
are affected.

At 610, the instrumentation code 142 may also be used to
detect (and record) any communication between application
components (e.g., as illustrated in FIG. 2). For example, if a
user were to click on a button within the application 106
during the recording phase 600, the click would be docu-
mented (including information such as the target button)
along with all state changes experienced by the software
objects 136, . . ., 138 with instrumentation code 142 within
the application 106, as well as any messages sent between the
application’s components (e.g., particular to the model-view-
controller (MVC) design pattern as illustrated in FIG. 2). The
same state changes and messages would be expected if the
same ‘click’ actions (as detected at 602) were to be replayed
during a later session (e.g., FIG. 7).

At 612, it may be determined whether a cool-down period
has elapsed (e.g., a threshold time interval) and the applica-
tion has settled. If the application 106 has not settled, pro-
cessing may resume at 608, where the instrumentation code
142 may continue to monitor state changes (at 608) and
component communications (at 610). If the application 106
has settled, processing may resume at 604, when the record-
ing session 600 may be stopped (e.g., a user clicks “Stop
Recording” in the toolbar 122). At 606, the detected actions
(e.g., at 602) may be recorded as a “use case” (or file) 128,
which includes the application related events (e.g., the inputs
detected at 602). Additionally, one or more assertions (e.g.,
baseline assertions 130) may be generated by the instrumen-
tation code 142, based on the detected state changes and/or
recorded communications.

FIG. 7 is a flowchart of an example replay algorithm used
by the SAF of FIG. 1, in accordance with an example embodi-
ment of the disclosure. Referring to FIGS. 1-4 and 7, instead
of entering the recording phase 600, the user may opt to load
and replay (using replay sequence 700) a previously recorded
use case (e.g., 128) after the SAF 120 has been initialized
(e.g., recording of actions, such as 128, may be loaded at 702).

10

15

20

25

30

35

40

45

50

55

60

65

8

After the user has selected a saved recording (e.g., 128) using
the toolbar 122, the SAF 120 may be used to simulate (e.g., at
704) the recorded actions sequentially. After the simulation of
each action within the use case 128, the SAF 120 may capture
the same information about the software object components
(e.g., 136, . . ., 138) of the application 106 as was previously
captured during the recording phase (state changes as moni-
tored and captured at 706, and component messages as
detected and recorded at 708). After a cool-down period has
elapsed and the application has settled at 710 (i.e., no new
state change or communication is detected), processing may
proceed to 712 when detected assertions (e.g., 132) from the
replay sequence 700 may be compared with the benchmark/
baseline assertions (e.g., 130) stored during the recording
phase 600.

At 714, it may be determined if the assertions (e.g., 130 and
132) are equal, which would indicate that the application 106
behaves as expected. If the same sequence of state changes
and messages are experienced, the application 106 may be
considered to behave as expected. Processing may then con-
tinue at 720 and 704, if more actions remain for simulation.

If the assertions from the recording and replay phases are
different, processing may continue at 716, when it may be
determined whether to update the base of the baseline asser-
tions 130 using new behavior of the application (e.g., new
state changes or communications that have been detected
after, for example, a change in the application code). In this
regard, the SAF 120 offers the ability (at 716) to update
assertions (e.g., 130) if any are deemed outdated by the user
(e.g., according to the user’s discretion after studying the
information provided by the SAF 120). This feature allows
for certain state changes to be ignored, if the developer sees
them as unrepresentative of the application’s behavior. In this
instance (i.e., new state changes or communications between
application segments are considered insignificant), then at
718, the old assertions (e.g., baseline assertions 130) may be
overwritten (i.e., false assertion notifications may be
ignored).

If it is determined that the assertion base should not be
updated, then processing may conclude at 722, when a noti-
fication may be generated (e.g., to the code developer) so that
the developer may refactor the code to adhere to the baseline
assertions 130.

FIGS. 8-10 are flowcharts of example methods for analyz-
ing application code changes, in accordance with an example
embodiment of the disclosure. Referring to FIGS. 1-8, the
example method 800 may start at 802, when the SAF 120 may
add instrumentation code to a selected one or more of a
plurality of software objects (e.g., 136, . . ., 138) associated
with an application (106), when a corresponding object class
for the selected software objects (e.g., class 1 as seen in FIG.
1) matches at least one preferred object class (e.g., matches
class 114 in the configuration file 112).

At 804, in response to at least one application-related event
(e.g., user input at 602), the SAF 120 may detect using the
instrumentation code (142) one or more state changes of the
selected software objects (e.g., at 608), or one or more com-
munications between at least two of the selected software
objects (e.g., communication events between application
components, as may be detected at 610). At 806, the SAF 120
may generate using the instrumentation code (142), at least
one baseline assertion (e.g., baseline assertion 130 may be
generated at 606) based on the one or more state changes or
communications. At 808, the SAF 120 may generate a noti-
fication upon detecting at least one subsequent assertion (e.g.,
132) that does not match the at least one baseline assertion
(e.g., if the baseline assertion 130 does not match the subse-

US 9,229,846 B1

9
quent assertion 132, a notification may be provided at 716 to
determine if 718 or 722 should be performed).
Referring to FIGS. 1-7 and 9, the example method 900 may
start at 902, when the SAF 120 may receive a plurality of file

components (e.g., files A, . . ., Z) for an application (106),
each file component associated with at least one of a plurality
of object classes (e.g., 108, . . . , 110). At 904, the SAF 120

may add instrumentation code (142) to at least one of the
plurality of file components (e.g., software objects 136, . . .,
138 associated with the file components of application 106),
when an object class for the at least one file component (e.g.,
object class 1) matches at least one preferred object class
(e.g., selected object classes 114-116). At 906, the SAF 120
may monitor using the instrumentation code (142), one or
more software objects (e.g., 136, . .., 138) associated with the
at least one file component. At 908, upon detecting a state
change (e.g., at 608) in the one or more software objects, the
SAF 120 may store at least one received input instruction
(e.g., instruction received at 602 which may be stored as an
application-related event or use case at 606), the input instruc-
tion causing the state change. The SAF 120 may generate
using the instrumentation code (142), an assertion associated
with the state change (e.g., baseline assertions 130). At 910,
the SAF 120 may be used to replaying (e.g., during the replay
sequence 700) the stored at least one input instruction (the
recording of actions 128 may be loaded for replay at 702) to
verify the assertion (a subsequent assertion 132 may be gen-
erated and verified against the baseline assertion 130, as
described in reference to FIG. 7).

Referring to FIGS. 1-7 and 10, the example method 1000
may start at 1002, when the SAF 120 may retrieve a plurality
of instructions (e.g., the instructions from 128 may be
retrieved at 702). The instructions (e.g., 128) may be associ-
ated with at least one an input to an application (e.g., as
detected at 602), the at least one input causing a first state
change (e.g., as detected at 706) in at least one software object
of the application. At 1004, the SAF 120 may retrieve a first
assertion result, where the first assertion result is based on an
assertion generated by an instrumentation code within the
application and associated with the first state change (e.g., the
first assertion result may be associated with the baseline
assertion 130, which may be considered as the expected out-
come).

At 1006, while executing the retrieved plurality of instruc-
tions, the SAF 120 may monitor (e.g., at 706), using the
instrumentation code (142), the at least one software object.
At 1008, upon detecting a second state change in the at least
one software object, the SAF 120 may determine a second
assertion result using the assertion (e.g., the subsequent asser-
tion 132). For example, after the recording sequence (600)
and prior to the replay sequence (700), a user (e.g., program/
software developer) may perform one or more changes in the
application code for the application 106. In this regard, the
second state change in 1008 may be taking place after such
application code change. At 1010, the SAF 120 may compare
the first and second assertion results (e.g., at 712). At 1012,
the SAF 120 may determine whether to refactor code of the
application that is associated with the at least one application
code change, based on the comparison (e.g., at 716 and 722).

FIG. 11 is a diagram of an example computing system, in
which described embodiments can be implemented. The
computing system 1100 is not intended to suggest any limi-
tation as to scope of use or functionality, as the innovations
may be implemented in diverse general-purpose or special-
purpose computing systems. With reference to FIG. 11, the
computing system 1100 includes one or more processing
units 1110, 1115 and memory 1120, 1125 (e.g., coupled to the

10

15

20

25

30

35

40

45

50

55

60

65

10

processing units). In FIG. 11, this basic configuration 1130 is
included within a dashed line. The processing units 1110,
1115 execute computer-executable instructions. A processing
unit can be a general-purpose central processing unit (CPU),
processor in an application-specific integrated circuit (ASIC)
or any other type of processor. In a multi-processing system,
multiple processing units execute computer-executable
instructions to increase processing power. For example, FIG.
11 shows a central processing unit 1110 as well as a graphics
processing unit or co-processing unit 1115. The tangible
memory 1120, 1125 may be volatile memory (e.g., registers,
cache, RAM), non-volatile memory (e.g., ROM, EEPROM,
flash memory, etc.), or some combination of the two, acces-
sible by the processing unit(s). The memory 1120, 1125
stores software 1180 implementing one or more innovations
described herein, in the form of computer-executable instruc-
tions suitable for execution by the processing unit(s).

A computing system may have additional features. For
example, the computing system 1100 includes storage 1140,
one or more input devices 1150, one or more output devices
1160, and one or more communication connections 1170. An
interconnection mechanism (not shown) such as a bus, con-
troller, or network interconnects the components of the com-
puting system 1100. Typically, operating system software
(not shown) provides an operating environment for other
software executing in the computing system 1100, and coor-
dinates activities of the components of the computing system
1100.

The tangible storage 1140 may be removable or non-re-
movable, and includes magnetic disks, magnetic tapes or
cassettes, CD-ROMs, DVDs, or any other medium which can
be used to store information in a non-transitory way and
which can be accessed within the computing system 1100.
The storage 1140 stores instructions for the software 1180
implementing one or more innovations described herein.

The input device(s) 1150 may be a touch input device such
as a keyboard, mouse, pen, or trackball, a voice input device,
a scanning device, or another device that provides input to the
computing system 1100. For video encoding, the input
device(s) 1150 may be a camera, video card, TV tuner card, or
similar device that accepts video input in analog or digital
form, ora CD-ROM or CD-RW that reads video samples into
the computing system 1100. The output device(s) 1160 may
be a display, printer, speaker, CD-writer, or another device
that provides output from the computing system 1100.

The communication connection(s) 1170 enable communi-
cation over a communication medium to another computing
entity. The communication medium conveys information
such as computer-executable instructions, audio or video
input or output, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media can use an electrical, optical,
RF, or other carrier.

The innovations can be described in the general context of
computer-executable instructions, such as those included in
program modules, being executed in a computing system on
atarget real or virtual processor. Generally, program modules
include routines, programs, libraries, objects, classes, com-
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. The functionality of
the program modules may be combined or split between
program modules as desired in various embodiments. Com-
puter-executable instructions for program modules may be
executed within a local or distributed computing system.

US 9,229,846 B1

11

The terms “system” and “device” are used interchangeably
herein. Unless the context clearly indicates otherwise, neither
term implies any limitation on a type of computing system or
computing device. In general, a computing system or com-
puting device can be local or distributed, and can include any
combination of special-purpose hardware and/or general-
purpose hardware with software implementing the function-
ality described herein.

For the sake of presentation, the detailed description uses
terms like “determine” and “use” to describe computer opera-
tions in a computing system. These terms are high-level
abstractions for operations performed by a computer, and
should not be confused with acts performed by a human
being. The actual computer operations corresponding to these
terms vary depending on implementation.

FIG. 12 is an example cloud computing environment 1200
that can be used in conjunction with the technologies
described herein. The cloud computing environment 1200
comprises cloud computing services 1210. The cloud com-
puting services 1210 can comprise various types of cloud
computing resources, such as computer servers, data storage
repositories, networking resources, etc. The cloud computing
services 1210 can be centrally located (e.g., provided by a
data center of a business or organization) or distributed (e.g.,
provided by various computing resources located at different
locations, such as different data centers and/or located in
different cities or countries). Additionally, the cloud comput-
ing service 1210 may implement the SAF 120 and other
functionalities described herein relating to testing application
code changes using a state assertion framework.

The cloud computing services 1210 are utilized by various
types of computing devices (e.g., client computing devices),
such as computing devices 1220, 1222, and 1224. For
example, the computing devices (e.g., 1220, 1222, and 1224)
can be computers (e.g., desktop or laptop computers), mobile
devices (e.g., tablet computers or smart phones), or other
types of computing devices. For example, the computing
devices (e.g., 1220, 1222, and 1224) can utilize the cloud
computing services 1210 to perform computing operators
(e.g., data processing, data storage, and the like).

In accordance with an example embodiment of the disclo-
sure, the SAF 120 allows software developers to evolve appli-
cation code in a more efficient manner by, for example,
improved regression testing and automation of manual testing
for web-based applications (e.g., as application 106). Using
techniques described herein and using the SAF 120, develop-
ers may introduce new features into their product without the
issue of breaking the existing behavior of their application
(regression testing). As a result, developers can reduce the
amount of resources spent maintaining software. For
example, before merging a newly implemented feature with
an existing product, a developer may replay a previously
recorded use case. During this replay, the SAF 120 can moni-
tor the state changes experienced by the application’s soft-
ware objects. If the behavior of the application were accept-
able (based on a comparison with the original recording’s
assertions), the developer would be allowed to add their fea-
ture to the existing application. If the test were to fail, the
developer would need to either update the test’s assertions, or
refactor their code in order to not break existing application
functionality (as seen in reference to FIG. 7).

Furthermore, the assertions (expected behavior) for a
regression test may be updated immediately when a diver-
gence from the benchmark is detected. By allowing develop-
ers to update assertions immediately upon failure, the SAF
120 facilitates better-maintained test cases. Additionally, by
updating test cases during their execution, developers also

10

15

20

25

30

35

40

45

50

55

60

65

12

benefit from additional contextual information regarding the
test failure. The SAF can also be used to automate much of the
manual testing for web applications. Instead of manually
exercising use cases for an application repeatedly to ensure
correct behavior, the use case can be manually exercised once
and recorded for playback later. This would reduce the
amount of resources spent on testing.

Although the operations of some of the disclosed methods
are described in a particular, sequential order for convenient
presentation, it should be understood that this manner of
description encompasses rearrangement, unless a particular
ordering is required by specific language set forth below. For
example, operations described sequentially may in some
cases be rearranged or performed concurrently. Moreover, for
the sake of simplicity, the attached figures may not show the
various ways in which the disclosed methods can be used in
conjunction with other methods.

Any of the computer-readable media herein can be non-
transitory (e.g., volatile memory such as DRAM or SRAM,
nonvolatile memory such as magnetic storage, optical stor-
age, or the like) and/or tangible. Any of the storing actions
described herein can be implemented by storing in one or
more computer-readable media (e.g., computer-readable
storage media or other tangible media). Any of the things
(e.g., data created and used during implementation) described
as stored can be stored in one or more computer-readable
media (e.g., computer-readable storage media or other tan-
gible media). Computer-readable media can be limited to
implementations not consisting of a signal.

Any of the disclosed methods can be implemented as com-
puter-executable instructions or a computer program product
stored on one or more computer-readable storage media and
executed on a computing device (e.g., any available comput-
ing device, including smart phones or other mobile devices
that include computing hardware). Computer-readable stor-
age media are any available tangible media that can be
accessed within a computing environment (e.g., non-transi-
tory computer-readable media, such as one or more optical
media discs such as DVD or CD, volatile memory compo-
nents (such as DRAM or SRAM), or nonvolatile memory
components (such as flash memory or hard drives)). By way
of'example and with reference to FIG. 10, computer-readable
storage media include memory 1020 and 1025, and storage
1040. The term computer-readable storage media does not
include communication connections (e.g., 1070) such as
modulated data signals or carrier waves.

Any of the computer-executable instructions for imple-
menting the disclosed techniques as well as any data created
and used during implementation of the disclosed embodi-
ments can be stored on one or more computer-readable stor-
age media (e.g., non-transitory computer-readable media).
The computer-executable instructions can be part of, for
example, a dedicated software application or a software
application that is accessed or downloaded via a web browser
or other software application (such as a remote computing
application). Such software can be executed, for example, on
a single local computer (e.g., any suitable commercially
available computer) or in a network environment (e.g., via the
Internet, a wide-area network, a local-area network, a client-
server network (such as a cloud computing network), or other
such network) using one or more network computers.

For clarity, only certain selected aspects of the software-
based implementations are described. Other details that are
well known in the art are omitted. For example, it should be
understood that the disclosed technology is not limited to any
specific computer language or program. For instance, the
disclosed technology can be implemented by software writ-

US 9,229,846 B1

13

ten in C++, Java, Perl, JavaScript, Adobe Flash, or any other
suitable programming language. Likewise, the disclosed
technology is not limited to any particular computer or type of
hardware. Certain details of suitable computers and hardware
are well known and need not be set forth in detail in this
disclosure.

Furthermore, any of the software-based embodiments
(comprising, for example, computer-executable instructions
for causing a computer to perform any of the disclosed meth-
ods) can be uploaded, downloaded, or remotely accessed
through a suitable communication means. Such suitable com-
munication means include, for example, the Internet, the
World Wide Web, an intranet, software applications, cable
(including fiber optic cable), magnetic communications, elec-
tromagnetic communications (including RF, microwave, and
infrared communications), electronic communications, or
other such communication means.

As utilized herein the terms “circuits” and “circuitry” refer
to physical electronic components (i.e. hardware) and any
software and/or firmware (“code”) which may configure the
hardware, be executed by the hardware, and or otherwise be
associated with the hardware. As utilized herein, “and/or”
means any one or more of the items in the list joined by
“and/or”. As an example, “x and/or y” means any element of
the three-element set {(x), (¥), (X,)} As another example,
“X, y, and/or zZ” means any element of the seven-element set
1®), &), @), X, ¥), (X, 2), (¥, 2), (X, ¥, 2)}. As utilized herein,
the term “e.g.,” introduces a list of one or more non-limiting
examples, instances, or illustrations. As utilized herein, the
term “processor” may be used to refer to one or more of a
central processing unit, a processor of a symmetric or asym-
metric multiprocessor system, a digital signal processor, a
micro-controller, a graphics/video processor, or another type
of processor.

The disclosed methods, apparatus, and systems should not
be construed as limiting in any way. Instead, the present
disclosure is directed toward all novel and nonobvious fea-
tures and aspects of the various disclosed embodiments, alone
and in various combinations and sub combinations with one
another. The disclosed methods, apparatus, and systems are
not limited to any specific aspect or feature or combination
thereof, nor do the disclosed embodiments require that any
one or more specific advantages be present or problems be
solved.

The technologies from any example can be combined with
the technologies described in any one or more of the other
examples. In view of the many possible embodiments to
which the principles of the disclosed technology may be
applied, it should be recognized that the illustrated embodi-
ments are examples of the disclosed technology and should
not be taken as a limitation on the scope of the disclosed
technology. Rather, the scope of the disclosed technology
includes what is covered by the following claims. We there-
fore claim as our invention all that comes within the scope and
spirit of the claims.

We claim:

1. A method, implemented at least in part by a computing
device, for analyzing application code changes, the method
comprising:

by the computing device:

adding instrumentation code to a selected one or more of
a plurality of software objects associated with an
application, when a corresponding object class for the
selected software objects matches at least one pre-
ferred object class from a list stored in a configuration
file;

10

15

20

25

30

35

40

45

50

55

60

65

14

in response to at least one application-related event,

detecting using the instrumentation code:

one or more state changes of the selected software
objects; or

one or more communications between at least two of
the selected software objects;

generating using the instrumentation code, at least
one baseline assertion based on the one or more
state changes or communications; and

generating a notification upon detecting at least one
subsequent assertion that does not match the at
least one baseline assertion.

2. The method according to claim 1, comprising:

receiving a plurality of files for the application, the plural-

ity of files associated with one or more object classes.

3. The method according to claim 2, wherein receiving the
plurality of files takes place during re-loading of the applica-
tion into memory.

4. The method according to claim 1, wherein the applica-
tion-related event comprises at least one of:

an input to the application; and

a change in one or more of the plurality of software objects.

5. The method according to claim 1, comprising:

storing the at least one application-related event.

6. The method according to claim 5, comprising:

replaying the stored at least one application-related event

to generate the at least one subsequent assertion.
7. The method according to claim 1, wherein the corre-
sponding object class comprises one of a model object class,
a view object class, or a controller object class.
8. The method according to claim 1, wherein the applica-
tion is a browser-based application and the method further
comprises:
subsequent to adding the instrumentation code, running the
browser-based application inside a browser; and

generating a user interface inside the browser-based appli-
cation, the user interface for at least one of recording,
playback and storing of the at least one application-
related event.

9. A computer-readable storage having instructions
thereon for executing a method for analyzing application
code changes, the method comprising:

receiving a plurality of file components for an application,

each file component associated with at least one of a
plurality of object classes;
adding instrumentation code to at least one of the plurality
of file components, when an object class for the at least
one file component matches at least one preferred object
class from a list stored in a configuration file;

monitoring using the instrumentation code, one or more
software objects associated with the at least one file
component;

upon detecting a state change in the one or more software

objects:

storing at least one received input instruction, the input
instruction causing the state change; and

generating using the instrumentation code, an assertion
associated with the state change; and

replaying the stored at least one input instruction to gener-

ate a new assertion;

comparing the assertion with the new assertion to deter-

mine whether to update the assertion based on the com-
parison.

US 9,229,846 B1

15

10. The computer-readable storage of claim 9, further
including:

monitoring communications associated with the at least

one of the plurality of file components, the communica-
tions caused by the at least one received input instruc-
tion.

11. The computer-readable storage of claim 10, further
including:

upon detecting a communication associated with the at

least one of the plurality of file components, generating
using the instrumentation code, at least another assertion
associated with the detected communication.

12. The computer-readable storage of claim 11, further
including:

storing the at least one input instruction, the assertion and

the at least another assertion.

13. The computer-readable storage of claim 12, further
including, in response to code change in at least one of the
plurality of file components:

retrieving the at least one input instruction, the assertion

and the at least another assertion; and

replaying the at least one input instruction to verify the

assertion and the at least another assertion.

14. The computer-readable storage of claim 9, wherein the
plurality of object classes comprises at least one of a model
object class, a view object class, or a controller object class.

15. A computing device that includes a processor and a
memory, the computing device being adapted to perform a

10

20

25

16

method for analyzing application code changes for an appli-
cation, the method comprising:
retrieving a plurality of instructions, wherein:
the instructions are associated with at least one an input
to an application, the at least one input causing a first
state change in at least one software object of the
application, wherein a corresponding object class for
the at least one software object matches at least one
preferred object class from a list stored in a configu-
ration file;
retrieving a first assertion result, wherein:
the first assertion result is based on an assertion gener-
ated by an instrumentation code within the applica-
tion and associated with the first state change;
while executing the retrieved plurality of instructions,
monitoring, using the instrumentation code, the at least
one software object;
upon detecting a second state change in the at least one
software object, determining a second assertion result
using the assertion, the second state change taking place
subsequent to at least one application code change for
the application;
comparing the first and second assertion results; and
determining whether to refactor code of the application
associated with the at least one application code change
based on the comparison.

#* #* #* #* #*

